Courses
This is a comprehensive list of courses offered over the last several semesters. Not all courses are offered every semester or every year. Students will need to plan accordingly and should consult with their academic advisor when selecting courses.
For current offerings, please see the Schedule of Classes
ENTS 622: Introduction to Digital Communication Systems (3)
Principles of digital communication systems design. This includes analysis of the performance and relative merits of different modulation such as PSK, QAM, and GMSK, spectral analysis, sampling, signal processing techniques, filtering, AWGN channels, frequency selective fading channels and coherence bandwidth, time varying channels and Doppler spread, equalization, synchronization. Describes communications technologies such as spread spectrum, OFDM, and MIMO. Also provides programming labs where students learn to use Python in CoLab.
ENTS 625: Management and Organizational Behavior in the Telecommunications Industry (3)
This course covers the two areas: 1) management and organizational behavior and 2) strategic management. In both cases topics specific to the telecommunications industry will be stressed. Topics will include principles of leadership and personnel management, staffing and training, organizational structures, typical organizational structures in the telecommunications industry, introduction to the concept of strategy, industry analysis and competitive dynamics, and strategic cost analysis. Specific case studies in the telecommunications industry will also be addressed.
ENTS 629A: Special Topics in Cybersecurity: System Security (3)
This course will consider the entire protocol stack, from link layer to the application layer, from the perspective of a malicious attacker and examine the different possible security attacks at each layer. Then, the available countermeasures and security protocols to prevent such attacks will be discussed. Topics will include VLAN hopping, ARP attacks, spanning tree attacks, malformed IP packets, flooding, IP spoofing, denial of service, malformed TCP/UDP packets, port scanning, botnets, viruses, worms, Trojan Horse, spy ware, rootkit, buffer overflow, password cracking on the attack side, and WLAN security, IPSec, TLS/ SSL, HTTPS, SRTP, SNMP, NAT, firewalls and intrusion detection on the defense side.
ENTS 629B: Special Topics in Cybersecurity: Cryptography and Network Security (3)
The main objective of this course is to introduce the important concepts and technologies used in the area of cryptography and network security. Computer and network security is paramount in this age of universal electronic connectivity, viruses and hackers, eavesdropping and electronic fraud. In this course, we will seek to provide the student with a proper grounding in this area as well as a practical overview of important concepts in this field. First, we will seek to obtain an understanding of the basic issues that would be addressed by a network security capability and then take this knowledge and apply it to practical applications currently in the field. The students will be expected to research selected (by instructor) topics of research in this field and present their findings to the class.
ENTS 629C: Special Topics in Cybersecurity: Fundamentals of IT Systems Security (3)
This course provides an overview of IT system security challenges and strategies of countermeasure in the information systems environment. Topics include definition of terms, concepts, elements, and goals incorporating industry standards and practices with a focus on availability, vulnerability, integrity, and confidentiality aspects of information systems. We will first provide a short review of telecommunications and networking systems and provide a review of security protocols and encryption schemes. We will then discuss common risks, threats, and vulnerabilities and proceed to discussing countermeasures and discuss compliance laws and standards.
ENTS 630: The Economics of International Telecommunications (3)
Basic microeconomic principles used by telecommunications firms, including supply and demand, elasticity, costs, productivity, pricing, market structure and competitive implications of alternative market structures. Market failures and government intervention. Public policy processes affecting business operations.
ENTS 632: Telecommunications Marketing Management (3)
Topics covered include strategic marketing, sales and customer service challenges confronting organizations in the computer, communications and media industries. The course also addresses volatile technology, regulatory and competitive environments as a backdrop to strategic planning and management in the marketing domain.
ENTS 635: Decision Support Methods for Telecommunications Managers (3)
The telecommunications industry has been growing rapidly over the past decade and is increasingly viewed as the engine of the new information economy. Given the increasing complexity of this sector, telecommunications managers need to understand the process of evaluating tradeoffs to make sound and strategic business decisions. The aim of this course is to introduce management science techniques for informed decision making. Topics covered will include data analysis and regression, optimization models and applications ( workforce scheduling, manufacturing, network design, facility location), sensitivity analysis, decision trees, risk analysis, project management, and simulation. Emphasis will be on telecommunications managerial problems, model development and the use of software packages for decision support.
ENTS 640: Networks and Protocols I (3)
The course provides an introduction to the principles of computer networking and covers the architecture and operation of the TCP/IP protocol stack. Topics will include fundamental networking concepts, the layers of the TCP/IP protocol stack, the packet structure and operation of each layer with detailed discussion on reliable data transfer, flow control, congestion control, routing algorithms, error detection, Local Area Networks (LANs), and multiple access protocols. As a part of the course work, the students will attend lab sessions where they will learn how to capture and analyze network traffic, how to configure networking functions on Linux systems, and how to operate and configure routers using Juniper Networks devices in a real-world lab environment.
ENTS 641: Networks and Protocols II (3)
Prerequisite ENTS 640. The course covers the basic protocols in IP networks. In particular, the course will cover routing protocols in IP networks. The topics include a comparison of IPv4 and IPv6, IP addressing schemes, subnet design, Address Resolution Protocol (ARP). Concepts of static and dynamic routing will be studied. Practical issues of Distance Vector Protocols and Link State Protocols will be discussed. Then the course will focus on working details of Routing Information Protocol (RIP), and RIPv2, Open Shortest Path First (OSPF), Border Gateway Protocol (BGP4), and if time allows, a brief overview of Interior Gateway Routing Protocol (IGRP) and Enhanced Interior Gateway Routing Protocol (EIGRP) will be given.
ENTS 649B: Special Topics in Networking: Cloud Computing (3)
The course will present the state of the art in cloud computing technologies and applications. The course will explore potential research directions, as well as the technologies that will facilitate the creation of a global marketplace for cloud computing services that support scientific, industrial, business, and consumer applications. Topics will include : telecommunications needs; architectural models for cloud computing; cloud computing platforms and services; security, privacy, and trust management; resource allocation and quality of service; cloud economics and business models; pricing and risk management; interoperability and internetworking; legal issues; and novel applications. Course projects will expose students to different tools and technologies used to build and utilize clouds and the related security, privacy and trust management issues.
ENTS 649C: Special Topics in Networking: Internet of Things – Systems and Protocols (3)
This course covers the principles of Internet of Things communication network infrastructure and discusses IoT’s emerging implementation areas. It teaches the architecture and operations of the main network and data messaging protocols used in IoT. It introduces and discusses the emerging implementation areas of IoT such as Smart Homes, Smart Cities, Smart Cars, Smart Transportation, Smart Retail, and Smart Manufacturing. Core course topics will include fundamental networking concepts used in IoT such as Low Power Wide Area Network (LPWAN) and ZigBee/ IEEE 802.15.4 protocol. In addition, as essential components of IoT, Sensor Networks, Wireless Mesh Networks (WMN), RFID, 6LowPAN Protocol, Advanced Message Queuing Protocol (AMQP), Message Queue Telemetry Transport (MQTT Protocol) are introduced and discussed.
ENTS 653: AWS/PCS System Implementation (3)
Engineering issues associated with designing and deploying an AWS/PCS cellular wireless communications system in the current world environment will be examined. The course will focus on implementation issues such as the impact of real world concerns on the deployment strategy and the use of good engineering practice to overcome obstacles. Students will create and modify mock deployments using professional tools for cell planning and interference analysis. Students will also be exposed to drive testing tools and concepts for migration to future technologies.
ENTS 656: Introduction to Cellular Communication Networks (3)
Concepts and techniques involved in wireless digital communications with emphasis on cellular and PCS systems. Properties of Mobile radio channels; intersymbol interference, multipath, and fading effects; interleaving and diversity; multiple access schemes (TDMA, FDMA, CDMA); interuser interference, traffic issues, and cell capacity; power control strategies; frequency reuse and channel assignment; handoff, paging, and location update; cell layout; introduction to modern cellular standards.
ENTS 657: Satellite Communication Systems (3)
An examination of satellite telecommunication systems with an emphasis on the mobile satellite systems (MSS). Topics will include a historical perspective, orbital mechanics and constellations, choice of orbital parameters, propagations considerations, link budgets, interference issues and other obstacles, and existing and proposed mobile satellite systems. It will also look at some of the business aspects such as the cost of deploying and maintaining these systems.
ENTS 659B: Special Topics in Communications: Microwave Radio Communications Systems (3)
This course will study the design, deployment and coordination of point-to-point microwave communications systems. Emphasis will be placed on the use of microwave systems as backhaul for modern cellular networks to support increasing data demands. Topics will include modulation, equipment, design strategies, fade margins, interference, and coordination and implementation issues. Students will use industry-leading professional design software to perform RF-path analysis and design backhaul capacity networks. Through real-world case-studies, students will be exposed to professional coordination methods. Grades will be determined based on performance on exams and projects.
ENTS 669A: Special Topics in Computing: Embedded Systems (3)
Design methodologies and platforms for real time modern embedded digital systems have been evolving over time. In order to meet the system specifications, many models, tools, and operating systems exist to automate the design space exploration phase. This is done by bridging the implementation gap between having the real time requirements of the real time algorithms and the final system realization. In this course we will introduce students to fundamental concepts Real Time Operating System (RTOS), DSP models, and platforms used to implement embedded digital systems. Using hands-on experience developed through practical designs, exercises, and projects; we will discuss in detail how to analyze, implement, and synthesize these systems on two platforms: Embedded processors, and Graphics Processing Units (GPUs). For embedded processors, student will be exposed to implementation models for DSP systems using C. For RTOS, we will cover in depth how to choose the features necessary to select or implement multitask schedules, inter task communication, mutual execution and memory management. Finally, we will focus on emerging programmable platforms for embedded systems such as Graphics Processing Units and multicore systems where we will introduce and practice the fundamental programing concepts and challenges for such hardware.
ENTS 669B: Special Topics in Computing: Distributed Systems in a Virtual Environment (3)
This course will provide hands-on experience with the administration and configuration of Ubuntu Linux running as a virtual machine under VMware vSphere. Students will learn how to interact with Ubuntu Linux as well as learning fundamentals that can be applied to any Linux distribution. Students will also interact with VMware vSphere and will be provided with an introduction to the vSphere environment. Linux topics will include system architecture and components, kernel, task scheduling, memory management, device drivers, partitioning, file systems, boot processes, command line, customizing the environment, shell scripting, networking, and securing the system. vSphere topics will include hypervisors, virtual machines, virtual hardware, virtual networking, copying, backing up, and migrating. During the lab sessions, students will create virtual machines, manage virtual machines, install Ubuntu Linux on a virtual machine, work with the Linux command line, customize his/her Linux environment, perform various system administration tasks, write shell scripts, and configure firewalls and other network services.
ENTS 669C: Special Topics in Computing: Operating Systems (3)
This course deals with concepts and principles of operating systems with an emphasis on Unix/Linux operating system. It covers the concepts of a process, process synchronization, scheduling of processes, deadlocks, main memory and virtual memory management and an introduction to virtualization. Students will have an opportunity to implement some of these concepts on a Linux/Unix system through programming assignments to get some hands-on experience.
ENTS 669D: Special Topics in Computing; Introduction to Machine Learning (3)
An introduction to machine learning, which includes methods and techniques for supervised and unsupervised learning. Topics covered include Bayes decision theory, classification, maximum likelihood estimation, gradient descent, anomaly detection, linear and higher order regression, and support vector machines. Clustering and K-means, neural networks, dimension reduction and PCA, learning curves, precision, recall, decision trees, ranking and recommender systems, end-to-end machine learning pipelines, and ceiling analysis. The course will include Python projects applying these methods on real-world problems using libraries such as .Scikit-Learn and TensorFlow.
ENTS 669E: Special Topics in Computing: Pattern Recognition (3)
The course will cover the foundations of machine learning. Topic include Bayes decision theory, Gaussian classifier, Error bounds, maximum likelihood and Bayes estimation of parameters, non-parametric density estimation. Nearest neighbor rules and bounds, principal component analysis, linear discriminant analysis. Perceptron, support vector machines, kernel trick, artificial neural networks, deep networks, clustering, hidden Markov models. Expectation-maximization algorithm, and graphical models.
ENTS 669F: Special Topics in Computing: Introduction to Optimization (3)
Students will be introduced to linear, nonlinear, constrained, unconstrained optimization. Convex optimization will be highlighted. Topics will include: complements of linear algebra: inner product, projection, matrices as linear maps, symmetric matrices, singular value decomposition, least squares. Convexity, convex sets and functions, convex optimization problems, optimality conditions. Linear programming, quadratic programming, geometric programming. Smooth, non-convex optimization: optimality conditions. Algorithms: Newton’s method, steepest descent, coordinate descent; penalty and barrier methods, interior-point methods, alternating direction method of multipliers (ADMM). Applications will be considered, in particular in the area of machine learning.
ENTS 669G: Special Topics in Computing: Data Mining with Numerical Python (3)
This course will provide an introduction to the field of Data Mining, with an emphasis on understanding, manipulating, generating and classifying numerical data. Students will use python extensively to implement algorithms and gain familiarity with data mining techniques. In addition to Python 3, Numpy, and Matplotlib, other python packages with applications to data mining will be explored. Topics will include basic statistics and numerical computation, data acquisition and cleaning, data and dimension reduction, classification, prediction, patterns, and machine learning.
ENTS 669J: Special Topics in Computing: Internet of Things Lab (3)
Co-requisite: ENTS 656, ENTS 699M or permission of the instructor. This course will take a practical, hands-on approach to the study, prototyping, and implementation of the Internet of Things. Students will construct devices and implement programming to perform tasks such as remote sensing and activation, automated response and control, and internet-based monitoring and alerts. While software (e.g. Arduino IDE and Python) is available and open source, students will purchase open source hardware kits to complete their projects. Students will also use Python to program and interface with their devices.
ENTS 669K: Special Topics in Computing: AI Applications for 6G (3)
This course provides an overview for some critical applications of the sixth generation mobile communication system (6G). First, we address using AI to reduce latency for tactile internet employing SVM and Deep Learning. The course begins with the latency requirements of certain applications of 6G, and how machine learning algorithms support them. This is followed by a review of probability and Bayesian decision theory, linear regression, support vector machines, neural networks, and deep learning. The next module addresses unmanned vehicle positioning and navigation, and indoor precise positioning, and how 6G supports this application. Students will participate in two simulation projects in Python.
ENTS 670: Introduction to Business and Entrepreneurship (3)
This is a fundamentals course that provides a broad introduction to various business issues faced by any small business or startup. Course instructors present the key issues involved in outlining a clear value proposition and profitable business model, managing and monitoring finances, developing a winning team, addressing legal considerations, executing on operations including marketing sales, manufacturing and service.
ENTS 673: Project Management for Telecommunications (3)
This course will introduce modern project management. The course begins with an overview of the nuts and bolts of project management. From here it expands into Adaptive and Extreme project management. The focus of the course then shifts to the individual skills required to be an effective project manager, such as time management, leadership, and motivation. Once skills of the individual have been addressed, the course looks at social networks and how they could impact project management.
ENTS 689A: Special Topics: Algorithms and Data Structures (3)
This course provides both a broad coverage of basic algorithms and data structures and an in-depth discussion on selected important topics. We will learn exact algorithms, heuristics, and counter-example development skills in solving problems in sorting, graph, string, and job scheduling problems. Moderate to heavy programming (in C under UNIX) is expected. Through this study and practice, students will develop and improve their problem solving techniques.
ENTS 689F: Special Topics: Fundamentals of Wireless LANs (3)
Wireless LAN protocols (802.11 family) are at the foundation of this course. This course covers engineering concepts and business-practices related to Wireless LAN technologies. The first half of the course will go into engineering details of Wireless LAN protocols (802.11 b,g,a and n). Starting with the basics of radio technologies used for Wireless LANs to deployment related issues like site-survey and RF-efficient installation of antennas will be covered. MAC layer frames and communication will be taught in great details. Key features of 802.11n – MIMO, Radio Chains, Spatial Multiplexing and Transmit Beam Forming will be studied. In the second half of the course, Wireless LAN Security will be covered with an examination of current practices and standards in use (WEP/WPA, RADIUS, AES, 802.11i, 802.1x). New addition to the course is 802.11 “ac” and “ad” protocols which are the latest initiatives in WLAN industry. 802.11 protocols will be compared with DAS (Distributed Antenna Systems), Femto Cells and 802.22 (Super Wi-Fi). Throughout the semester, students will be required to practice class-room learning through hands-on projects. Industry-accepted software and hardware based tools for WLAN Site Survey, Design and Deployment, Network Optimization, Spectrum Analysis and Packet Sniffing will be provided to the students to work on group projects. Class presentations on each project by each group will ensure familiarity and learning of all the tools for every student.
ENTS 689K: Special Topics: Telecommunications Entrepreneurial Practicum (3-6)
ENTS 689K allows students to participate in the New Markets Venture Capital Clinic, which is offered as BUFN 738B by the Robert H. Smith School of Business. The clinic allows students to gain professional experience commensurate with that of an Analyst or Associate in a Venture Capital Firm. Students will be trained by members of New Markets Venture Partners, plus guest lecturers from the area’s leading venture and service firms. The course will expose students to real life activities covering the entire deal process from research, diligence, selection, negotiation and investment, as well as management and exit of portfolio companies. In addition to the training students will receive, they will be personally responsible for the conduct of several of these activities. Students will be required to spend 12 hours per week on this class (class time plus 10 additional hours) and register for two full semesters. Please see the Entrepreneurial Sequence for more information.
ENTS 689N: Special Topics: Network Programming (3)
This course teaches the fundamentals of programming in C including skills that students need for solving typical telecommunications engineering problems. Data structures, control flow, memory allocation, pointers, and sockets will be covered. In addition to the weekly classes and bi-weekly homework assignments, students are required to complete a final group project and make a short presentation. Students taking this course do not need to have any prior programming experience.
ENTS 689W: Special Topics: Short-range Wireless Systems (3)
Prerequisite: ENTS 622. This course will cover the physical layer characteristics and performance of wireless LAN technologies including ZigBee (IEEE 802.15.4), prominent 802.11 standards, and Bluetooth. The course focuses on the modeling and implementation of physical layer aspects of these technologies, such as channel characteristics, modulation techniques and packet and frame synchronization, carrier recovery and symbol synchronization, ranges and data rates.
ENTS 699K: Independent Study in Telecommunications: Advanced Studies on Modern Wireless Networks and Technologies (3)
Prerequisite: Permission from the instructor. This course provides an opportunity for students to learn about the latest advancements in wireless communication systems and standards along with new deployment models, use cases and services. It is structured as a combination of instruction based learning to provide students with sufficient background on key baseline concepts and technologies to prepare them to choose and work on more recent advancements of such concepts and technologies in individual or group study projects. The syllabus is updated periodically to best reflect the state of the art in wireless communications, for example it will start with the latest standards of 4G systems, and expands into 5G requirements and standards for New Radios (NR) in Release 15 and possible expansions in Release 16 of 3GPP as they develop. Some of candidate topics for group studies are Carrier Aggregation, CoMP, Massive MIMO, SON, Enhanced Positioning, License Assisted Access and LTE WiFi aggregation, Enhanced MBMS, Dynamic Spectrum Sharing, V2X/IoTs, VoLTE, which will be selectively covered based on student’s interests and capacity.
ENTS 699R: Special Topics in Communications: Analytical Foundations of Telecommunications (1)
This course will provide the fundamental knowledge and analytical tools necessary to pursue graduate-level studies in telecommunications. The topics will include: continuous-time and discrete-time signals and systems, time- and frequency-domain analysis, Fourier transforms and their properties, filtering and modulation, including hands-on analysis in Matlab. Probability and random processes, expected value, correlation and covariance, power spectral density, noise and its impact on communication systems’ performance and bit error rate, also with hands-on analysis in Matlab.
ENTS 749A: Advanced Topics in Networking: Network Traffic and Application Performance Analysis (3)
Prerequisites: ENTS 640. This graduate-level course covers the fundamentals of network traffic measurement and how the information in traffic traces can be used for different purposes. We will target an important use-case of traffic analysis which is application performance management. Due to the growing trend in online services, application performance management has become an important requirement for all organizations. Furthermore, maintaining the necessary infrastructure to guarantee acceptable user experience is critical to their success. This course will take a top-down approach by reviewing the basics of application and transport layer protocols as well as the effects of various network components on the performance of an application. Through lecture and lab sessions, students will learn different traffic measurement tools and how the traffic traces can be used to evaluate the performance of an application under different conditions. The course also briefly discusses another use-case of traffic measurement i.e., network security, through hands-on experiments with available software packages. Cryptography and security fundamentals are not covered and they are presented in detail by other specialized courses.
ENTS 749B: Advanced Topics in Networking: Software-Defined Networking (3)
Prerequisites: ENTS 640 and ENTS 641. This advanced-level graduate course covers software-defined networking (SDN), its key principles, building blocks, and design as well as its recent applications and uses cases in industry. SDN is a new paradigm in telecommunications that re-thinks conventional network design/opertations/abstractions and makes networks openly programmable, controllable, and affordable. SDN is widely accepted by industry as a game changer, with use in domains ranging from home networks to large-scale wide-area backbone networks. The objective of this course is to provide students with practical knowledge and in-depth understanding of SDN along with the ability to design and program the control plane of networks. Programming assignments and a project in this course provide students with opportunities to work hands-on with Python programming language and with popular open-souce SDN tools. Students will gain familiarity with networking needs, opportunities, and challenges in environments such as data centers.
ENTS 749D: Advanced Topics in Networking: Network Design and Configuration Lab (3)
Prerequisites: ENTS 640 and ENTS 641. This networking lab course will provide hands-on experience with the configuration and management of routers and switches in a real-world networking environment using Juniper Networks devices. Students will learn how to interact with networking devices through the Junos OS and how to navigate the command line interface (CLI). Topics will include router HW and SW architecture, interfaces, routing policies, static route configuration, configuring RIP and OSPF, VLANs and their configuration, firewall filters and security policies, class of service (CoS) management, network operation monitoring, and trouble shooting. During the lab sessions, students will write and test configurations for routers and switches given a set of network specifications, policies and conditions.
ENTS 749E: Advanced Topics in Networking: Network Automation (3)
Prerequisites: ENTS 640 (or JNCIA) and knowing Python. The course focuses on tools and techniques to remotely and programmatically configure and manage network devices. Topics will include: structured data formats and data models, JSON, XML, YAML, YANG. Machine to machine communication: remote procedure calls, RESTful APIs and device configuration protocols such as NETCONF and RESTCONF. Configuring and managing Juniper network devices with Python using the pyEZ library. Ansible architecture, configuration, playbook creation and special modules. The students will work on a group project to design, build and test a network configuration and monitoring system in Python.
ENTS 749F: Advanced Topics in Networking: Security in Cloud Computing (3)
Prerequisites: ENTS 640. This course will present the principles, tools and techniques necessary for the secure setup, configuration and operation of cloud-based information systems, focusing on the Amazon Web Services (AWS) cloud computing platform. Topics will include: cloud services overview, computing (EC2, Lambda), storage/databases (S3, EBS, EFS, RDS), and networking (VPCs). Most important network and information security tools, symmetric key and public/private cryptography, secure hash functions, digital signatures, certificates, authentication protocols, SSO services, firewalls and access control lists. Common attacks against cloud-based systems, threat modeling and vulnerability management. Data and cloud asset management and protection, Identity and Access Management (IAM), securing VPCs, data at rest and in transit, key management. Cloud monitoring, logging and audit trails, incident detection, response and recovery. The students will work on a number of lab exercises using AWS to configure, manage and secure various cloud services and cloud-based applications.
ENTS 759A: Advanced Topics in Wireless Communications: 3G/4G Wireless Networks and Systems (3)
Prerequisites: ENTS 622 and ENTS 653 or ENTS 656. This course presents some of the key concepts and technologies used in the design of third generation (3G/3G+/4G) wireless networks and standards. The course is divided into three main areas of study. First, the course begins with an overview of 3G concepts and technologies followed by detailed discussion of their implementation into 3G standards such as cdma2000 and WCDMA. Then the course moves on to providing a technical overview of 3G+ systems such as EV-DO and HSPA, which are the key technologies for high speed mobile internet today. Design concepts and comparisons are emphasized. Finally, after covering 3G systems, the course will also provide an overview of OFDMA based technologies including WiMAX and LTE which are contenders for 4G/IMT-Advance technologies.
ENTS 759B: Advanced Topics in Wireless Communications: Wireless OFDM Systems (3)
Prerequisites: ENTS 622 and ENTS 653 or ENTS 656. The main objective of the course is to introduce the most important concepts and technologies used in the design of current wireless OFDM systems, focusing on the physical layer. First, the basic principles of OFDM systems are presented: OFDM modulation/demodulation, role of the cyclic prefix, pilot symbols and preambles, transmit/receive filtering, RF impairments and their impact on performance, channel estimation, timing and synchronization. Then, the 3PP Long Term Evolution (LTE) standard is described in details as an example of a state-of-the-art wireless OFDM system, emphasizing its physical-layer aspects. As a part of the course work, the students will explore the design and implementation issues of an OFDM-based transceiver using the Ettus B210 software defined radio.
ENTS 759C: Advanced Topics in Wireless Communications: Optimization, Drive-testing, and Analysis of Modern Cellular Networks (3)
Prerequisites: ENTS 656 or ENTS 653 or permission of the instructor. Students must have a graduate level of understanding of cellular networks prior to taking this course. This course will focus on optimizing an operational 2G/3G network by collecting drive-test data and analyzing the results in detail. Students will learn to use drive-test equipment in a real-world environment and will study the behavior of both 2G and 3G networks in varying conditions. Students will also learn details of the GSM and UMTS physical and network layers as they relate to optimization.
ENTS 759D: Advanced Topics in Wireless Communications: Distributed Antenna Systems and Small Cells (3)
Prerequisites: ENTS 656 or ENTS 653. Distributed Antenna Systems (DAS) and small cells help solve the growing problem of coverage, capacity and spectrum crunch in the cellular industry. This course will focus on DAS (70-80%) and small cell architecture (20-30%). It plans to cover comprehensive engineering details of DAS, recent technical advances, widely used RF practices, and open issues of the DAS and in-building coverage. We will study the architecture, capacity, connectivity and scalability aspects of DAS and small cells. In-building propagation models, fading and interference aspects along with PDPs will be covered in greater details. We will also study essential elements of DAS infrastructure (antennas, repeaters, amplifiers, outdoor vs Indoor components, and backhaul options etc). For small cells, we will cover key technical components of HetNets and small cell deployments both indoors and outdoors. Students will use industry-leading professional DAS design software (iBWave or similar) to design and analyze an in-building network for optimal coverage and capacity. A final project, based on real-world problem from the industry will be assigned to students. Handful of lab-based assignments will be given to become familiar with the software before assigning the final project.
ENTS 759E: Advanced Topics in Wireless Communications: Design and Planning of Next Generation of Cellular Infrastructure (3)
Prerequisites: ENTS 656 or ENTS 653. While 5G is under development, features and capabilities of 5G Base Station (gNodeB) are being suggested and tested. Students in this course will explore the advancements achieved in the Base Station technologies since the inception of LTE. This course will explore the latest development in the cellular infrastructure industry, such as Remote Radio Head (RRH), Base Band Unit (BBU) Processing, CPRI Protocol, FTTA (Fiber to the Antenna) solutions, Network Slicing, C/U Split, Network and Cell Virtualization, Centralized RAN (C-RAN), and Fiber Fronthaul. Students will gain system level understanding of CPRI protocol with examples of common link interfaces. Effects of MIMO antennas on cell towers’ connection diagram will be evaluated. Latest developments in Massive MIMO and mmWave domain and their impacts on the antenna design and RF planning will be studied. RF Plumbing Design and Testing aspects of new base stations will be covered with hands-on exercises. The course will allow students to perform advanced testing and troubleshooting using industry accepted tools from Anritsu, CommScope, and EXFO. Towards the end of the class, a field-trip to a live cell-site will be scheduled, where we will be able to see all the RF components in action and relate the RF theories to the practical applications.
ENTS 759F: Advanced Topics in Wireless Communications: 5G Radio Access Networks and Technologies (3)
Prerequisites: ENTS 759A or ENTS 759B or Permission of Instructor. This course provides an opportunity for students to learn about the latest advancement in wireless communication systems in evolution toward 5G standards along with new deployment models, use cases and services. The key focus will be in 5G new radio (NR) air interface design as well as NB-IoT and latest enhancements in LTE Advanced Pro standard which are collectively form the 5G standards to meet IMT-2020 requirements. The course is structured as a combination of instruction based learning to provide students with sufficient background on key baseline concepts and technologies to prepare them to choose and work on some recent advancements of such concepts and technologies in individual or group study projects.
ENTS 759G: Advanced Topics in Communications: Radio Access Technologies, Networks and System Design (3)
Prerequisites: ENTS 656 or Permission of Instructor. This course presents system design principles and protocols used in modern radio access networks and technologies including but not limited to 3G and 4G wireless standards. Many concepts are also applicable in design of 5G/IMT2020 systems and standards. Discussions start with reviewing some of key component technologies used in Layer 1 and Layer 2 design of air interface, including OFDMA, MIMO, link adaptation, resource allocation and spectrum access in licensed and shared spectrum The majority of the course will then focus discussing how such techniques are adopted and applied in design of 3G (UMTS and HSPA) standards and with even more details in LTE and LTE advanced. Signaling protocols related to synchronization system access, mobility and power management are covered in this section. The final part of the course covers the 4G/LTE based radio access network (RAN) deployment models and dimensioning issues using some case studies with detailed link budget and capacity analysis.
ENTS 759I: Advanced Topics in Communications: Selected Topics in 5G System Design and Evolution (3)
Prerequisites: ENTS 759G or Permission of Instructor. This course covers the latest advancement in wireless communication systems in 5G radio access networks and standards evolution along with new deployment models, use cases and services. The key focus is in 5G new radio (NR) air interface design, NB-IoT and latest enhancements in LTE Advanced Pro standard, which are collectively form the 5G standards to meet IMT-2020 requirements and beyond. The course is structured as a combination of instruction-based learning to provide students with sufficient background on key baseline 5G concepts and technologies and prepare them to choose and work on some of latest advancements of such concepts and technologies in individual or group study projects. Some of topics typically covered in projects include Cellular V2X, NR in unlicensed spectrum and dynamic spectrum sharing, Non-Terrestrial Networks, Narrow-band and Industrial IoT, 5G Multicast and Broadcast Services, Relay and Integrated Access and Backhauling, among others.